Cambridge Secondary 1 Progression Test

Question paper

45 minutes

Science Paper 2

Stage 9

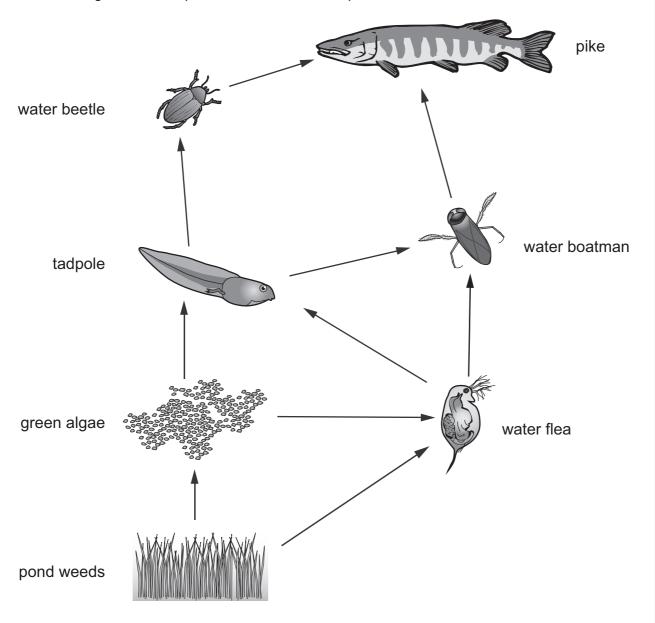
Name

Additional materials: Ruler

READ THESE INSTRUCTIONS FIRST

Answer all questions in the spaces provided on the question paper.

You should show all your working on the question paper.


The number of marks is given in brackets [] at the end of each question or part question.

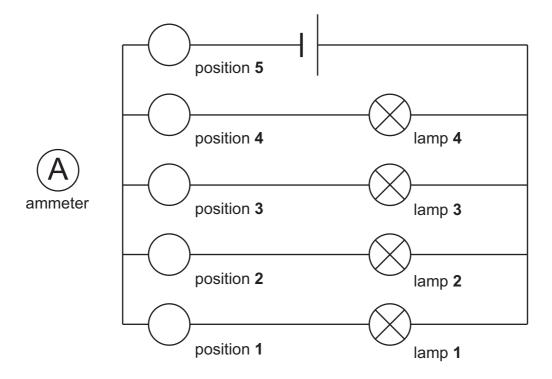
The total number of marks for this paper is 50.

For Teac	her's Use
Page	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	_
20	
Total	

1 The diagram shows part of a food web in a pond.

For Teacher's Use

(a) Complete these sentences using the food web.


An example of a predator is	
-----------------------------	--

Its prey is the ______ [2]

(b)	(i)	Complete this food chain.	
		water flea	
			[1]
	(ii)	In the box under the food chain, draw an arrow to show the direction of energy flow.	F41
			[1]
(c)	(i)	The number of green algae and pond weeds increase.	
		What will happen to the number of tadpoles and water fleas?	
		Explain why this happens.	
			[2]
	(ii)	Alfonso adds more pike to the pond.	
		Predict one effect this may have.	
			[1]
(d)		composers are important in food webs. at do decomposers do?	
	•••••		
			[1]

2 Sami investigates this parallel circuit.

Teacher's Use

He uses one ammeter and places it in position **1**. He takes the reading and records it in the table.

He then places the ammeter in Position 2. He takes the reading and records it in the table. He repeats this process again for Position 3, and then Position 4.

Sami predicts that the readings on the ammeter in Positions 1, 2, 3 and 4 will be all the same.

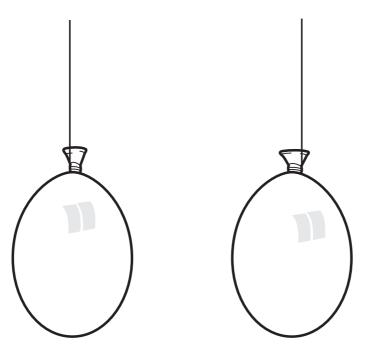
These are Sami's results.

position of ammeter	current in amps
1	0.10
2	0.15
3	0.10
4	0.10
5	

(a)	Suggest why one reading was different.	[1]	For Teacher's Use
(b)	Use the results in the table to predict the current in position 5 .		
	amps	[1]	
(c)	Sami removes lamp 1 from the circuit. Predict the current in position 5 now.		
	amps	[1]	

3 Kylie investigates the importance of the elements contained in mineral salts for plants.

For Teacher's Use


Here are her results.

all mineral salts	all mineral salts without nitrogen	all mineral salts without phosphorus	all mineral salts without magnesium
healthy and fully grown	small plant	weak shoots and roots	yellow leaves

(a)	The first plant in the table was given all the mineral salts.	
	Why did Kylie include a plant that was given all the mineral salts in her investigation?	
		[1]
(b)	Kylie records her results by drawing a picture of each plant.	
	What one measurement could she take to improve her results?	
		[1]

(c)	Inte	rpret the results for the following three plants.	
	(i)	The plant given all the mineral salts without nitrogen looks	
		because nitrogen is needed for	
		······································	[1]
	(ii)	The plant given all the mineral salts without phosphorus is	
		because phosphorous is needed for	[1]
	(iii)	The plant given all the mineral salts without magnesium is	
		because magnesium is needed for	[1]

They are then hung next to each other.

Here are some statements about the two balloons.

Tick (\checkmark) one box for each statement to show whether it is **true** or **false**.

statement	true	false
The balloons have different charges and so repel each other.		
The balloons have a neutral charge so repel each other.		
The balloons have the same charge so repel each other.		
The balloons have the same charge so attract each other.		
The balloons have a neutral charge so attract each other.		

© UCLES 2011 P110/02/A/M/11

[2]

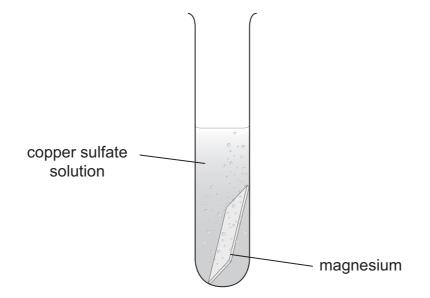
Teacher's Use (b) Electrostatics can be useful.

The picture shows a person dusting.

(i) Use your knowledge of electrostatics to complete these sentences. Use these words.

att	racted	charged	negat	ive	opposite	
	positive	rep	pelled	the same		
	The duster is		The dust has			
	charge so it is		to t	the duster.		[2]
(ii)	Electrostatics can	be a problem.				
	Give one example	€.				
						[1]

5 Different metals are added to water.


Some of these metals are added to acid.

Here are the results.

metal	observation with water	observation with acid
zinc	no reaction	bubbles of gas and metal slowly react
potassium	it floats and then a flame is seen	_
calcium	bubbles of gas	reacts quickly producing many bubbles of gas
platinum	no reaction	no reaction
nickel	no reaction	a few bubbles of gas when the acid is warmed

(a)	Write the five metals in order of reactivity.	
	Start with the most reactive metal at the top.	
	most reactive	
	least reactive	[1]
(b)	Name another metal that reacts in a similar way to potassium.	[1]
(c)	Why is there no result shown in the table for potassium being added to acid?	
		[1]

6 (a) Anneka puts a piece of magnesium in a solution of copper sulfate.

A reaction takes place.

The word equation for the reaction is:

Why is this reaction called a displacement reaction?	
	_

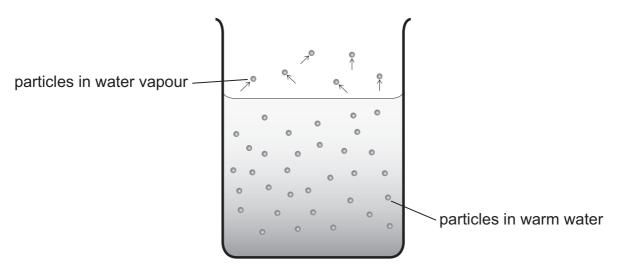
(b) Anneka puts a piece of magnesium in a solution of lead nitrate.

magnesium + copper sulfate → magnesium sulfate + copper

A displacement reaction takes place.

Write the word equation for this reaction.

[2]


(c) Anneka puts some copper in a solution of sodium chloride.

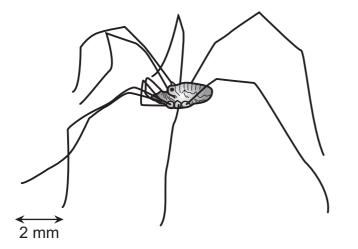
There is no reaction. Give a reason.

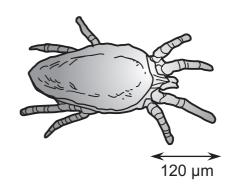
[1]

7	Franco	leaves a beaker of warm water in the laboratory for 20 minutes.	
	He obs	serves that the temperature of the water has decreased.	
	(a) Ho	w does he measure this temperature change?	
	•••••		[1]
	(b) (i)	Some of the particles in the warm water have escaped from the surface of the water.	f
		Name this process.	
			[1]

(ii) The diagram shows the particles in and above the beaker of warm water.

Which of these statements help to explain why the warm water cools down?


Tick (✓) three boxes.


The particles in warm water are gaining kinetic energy.	
The particles in warm water with the most kinetic energy escape.	
The particles in warm water with the least kinetic energy escape.	
The particles in warm water with less kinetic energy are left behind.	
The particles in warm water with more kinetic energy are left behind.	
The less kinetic energy the particles have, the cooler the water.	

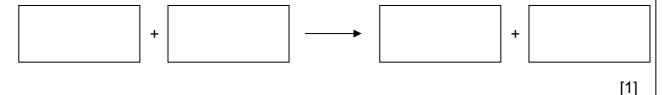
[3]

8 Here are two arachnids.

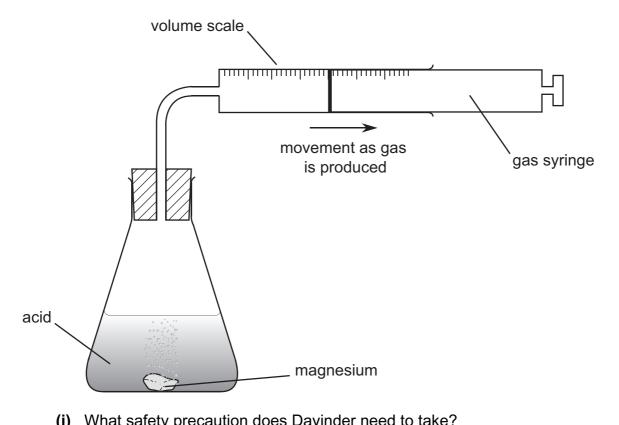
Arachnid A

Arachnid B

[2]


This key can be used to identify seven arachnids. Identify the **two** arachnids shown in the diagram.

1	has a tail	Go to 2
	does not have a tail	Go to 3
2	tail is long	Alta
	tail bends	Scorna
3	has pincers larger than body	Go to 4
	does not have pincers	Go to 5
4	smaller than 2mm	Piona
	larger than 2mm	Lotta
5	small fat legs	Go to 6
	thin legs with bends in middle	Coddil
6	body is two egg shapes	Seema
	body is one egg shape	Dorril
	Arachnid A is a	
	Arachnid B is a	

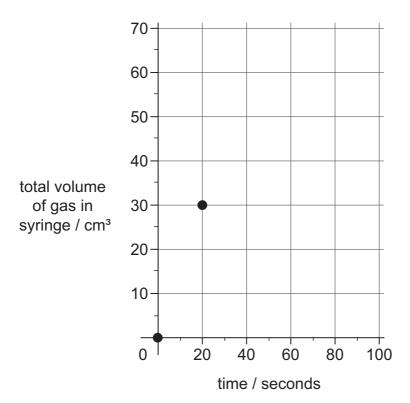

9 Davinder investigates the reaction between magnesium and hydrochloric acid. Magnesium chloride and hydrogen are made.

For Teacher's Use

(a) Write the word equation for this reaction.

(b) He uses this apparatus.

('')	what safety president does buyinger need to take:


Explain your answer.	
	[2]

(ii) How could he make sure his results are reliable?

[1]

(c) The table shows his results.

time in seconds	total volume of gas in syringe in cm ³
0	0
20	30
40	45
60	55
80	60
100	60

(i) Finish plotting the graph using the results from the table.

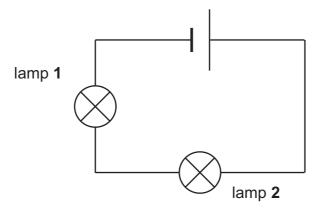
[1]

(ii) Draw the line of best fit to complete the graph.

[1]

(iii) Use your graph to find out what time the reaction finishes.

seconds

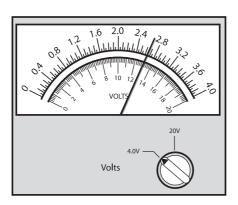

[1]

	(iv) Complete this sentence. The reaction is fastest between seconds and	seconds. [1]	F Tead U
(d)	What could speed up the reaction between magnesium and	d hydrochloric acid?	
	Tick (✓) three boxes.		
	Use a less concentrated hydrochloric acid.		
	Add a catalyst.		
	Use the same mass of magnesium but as a fine powder.		
	Use the same mass of magnesium but as one large lump.		
	Increase the temperature of the acid.		
	Decrease the temperature of the acid.		

[2]

10 This is a complete electrical circuit.

For Teacher's Use

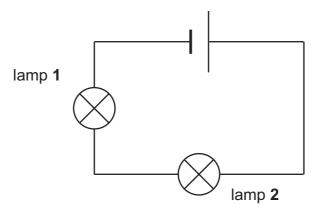

(a) Add an ammeter to the circuit diagram to show how you would measure the current flowing through lamp 2.

[1]

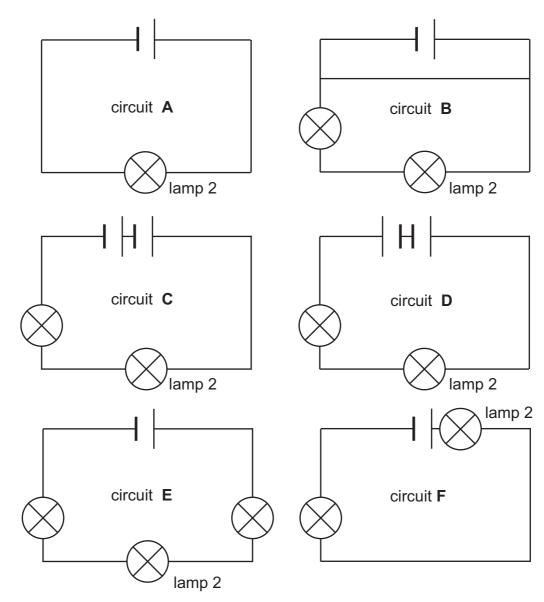
(b) Add a voltmeter to the circuit diagram to show how you would measure the voltage across lamp **2**.

Look at the reading on the voltmeter.

It is connected to the 0-4 V scale.



The reading on this voltmeter is V [1]


(c) Here is the original circuit.

For Teacher's Use

[2]

Which two circuits could increase the brightness of lamp 2?

The circuits that could increase the brightness of lamp 2 are

and

11 Organisms inherit characteristics from their parents.

The genetic material needed is found in cells.

Which part of the cell carries this genetic information? Circle the correct answer.

cell membrane

cell wall

cytoplasm

nucleus

[1]

For Teacher's Use

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.