
Solutions of APMO 2014

Problem 1. For a positive integer m denote by S(m) and P (m) the sum and product,
respectively, of the digits of m. Show that for each positive integer n, there exist positive
integers a1, a2, . . . , an satisfying the following conditions:

S(a1) < S(a2) < · · · < S(an) and S(ai) = P (ai+1) (i = 1, 2, . . . , n).

(We let an+1 = a1.) (Problem Committee of the Japan Mathematical Olympiad Foundation)
Solution. Let k be a sufficiently large positive integer. Choose for each i = 2, 3, . . . , n,

ai to be a positive integer among whose digits the number 2 appears exactly k + i− 2 times
and the number 1 appears exactly 2k+i−1 − 2(k + i − 2) times, and nothing else. Then, we
have S(ai) = 2k+i−1 and P (ai) = 2k+i−2 for each i, 2 ≤ i ≤ n. Then, we let a1 be a positive
integer among whose digits the number 2 appears exactly k + n − 1 times and the number
1 appears exactly 2k − 2(k + n − 1) times, and nothing else. Then, we see that a1 satisfies
S(a1) = 2k and P (a1) = 2k+n−1. Such a choice of a1 is possible if we take k to be large
enough to satisfy 2k > 2(k + n− 1) and we see that the numbers a1, . . . , an chosen this way
satisfy the given requirements.

Problem 2. Let S = {1, 2, . . . , 2014}. For each non-empty subset T ⊆ S, one of its
members is chosen as its representative. Find the number of ways to assign representatives
to all non-empty subsets of S so that if a subset D ⊆ S is a disjoint union of non-empty
subsets A,B,C ⊆ S, then the representative of D is also the representative of at least one
of A,B,C. (Warut Suksompong, Thailand)

Solution. Answer: 108 · 2014!.
For any subset X let r(X) denotes the representative of X. Suppose that x1 = r(S).

First, we prove the following fact:

If x1 ∈ X and X ⊆ S, then x1 = r(X).

If |X| ≤ 2012, then we can write S as a disjoint union of X and two other subsets of S,
which gives that x1 = r(X). If |X| = 2013, then let y ∈ X and y 6= x1. We can write X as
a disjoint union of {x1, y} and two other subsets. We already proved that r({x1, y}) = x1

(since |{x1, y}| = 2 < 2012) and it follows that y 6= r(X) for every y ∈ X except x1. We
have proved the fact.

Note that this fact is true and can be proved similarly, if the ground set S would contain
at least 5 elements.

There are 2014 ways to choose x1 = r(S) and for x1 ∈ X ⊆ S we have r(X) = x1. Let
S1 = S \ {x1}. Analogously, we can state that there are 2013 ways to choose x2 = r(S1)
and for x2 ∈ X ⊆ S1 we have r(X) = x2. Proceeding similarly (or by induction), there
are 2014 · 2013 · · · 5 ways to choose x1, x2, . . . , x2010 ∈ S so that for all i = 1, 2 . . . , 2010,
xi = r(X) for each X ⊆ S \ {x1, . . . , xi−1} and xi ∈ X.

We are now left with four elements Y = {y1, y2, y3, y4}. There are 4 ways to choose r(Y ).
Suppose that y1 = r(Y ). Then we clearly have y1 = r({y1, y2}) = r({y1, y3}) = r({y1, y4}).
The only subsets whose representative has not been assigned yet are {y1, y2, y3}, {y1, y2, y4},
{y1, y3, y4}, {y2, y3, y4}, {y2, y3}, {y2, y4}, {y3, y4}. These subsets can be assigned in any way,
hence giving 34 · 23 more choices.
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In conclusion, the total number of assignments is 2014 · 2013 · · · 4 · 34 · 23 = 108 · 2014!.

Problem 3. Find all positive integers n such that for any integer k there exists an
integer a for which a3 + a− k is divisible by n. (Warut Suksompong, Thailand)

Solution. Answer: All integers n = 3b, where b is a nonnegative integer.
We are looking for integers n such that the set A = {a3 +a | a ∈ Z} is a complete residue

system by modulo n. Let us call this property by (*). It is not hard to see that n = 1
satisfies (*) and n = 2 does not.

If a ≡ b (mod n), then a3 + a ≡ b3 + b (mod n). So n satisfies (*) iff there are no
a, b ∈ {0, . . . , n− 1} with a 6= b and a3 + a ≡ b3 + b (mod n).

First, let us prove that 3j satisfies (*) for all j ≥ 1. Suppose that a3 +a ≡ b3 +b (mod 3j)
for a 6= b. Then (a − b)(a2 + ab + b2 + 1) ≡ 0 (mod 3j). We can easily check mod 3 that
a2 + ab + b2 + 1 is not divisible by 3.

Next note that if A is not a complete residue system modulo integer r, then it is also not
a complete residue system modulo any multiple of r. Hence it remains to prove that any
prime p > 3 does not satisfy (*).

If p ≡ 1 (mod 4), there exists b such that b2 ≡ −1 (mod p). We then take a = 0 to
obtain the congruence a3 + a ≡ b3 + b (mod p).

Suppose now that p ≡ 3 (mod 4). We will prove that there are integers a, b 6≡ 0 (mod p)
such that a2 + ab + b2 ≡ −1 (mod p). Note that we may suppose that a 6≡ b (mod p), since
otherwise if a ≡ b (mod p) satisfies a2 + ab + b2 + 1 ≡ 0 (mod p), then (2a)2 + (2a)(−a) +
a2 + 1 ≡ 0 (mod p) and 2a 6≡ −a (mod p). Letting c be the inverse of b modulo p (i.e.
bc ≡ 1 (mod p)), the relation is equivalent to (ac)2 + ac + 1 ≡ −c2 (mod p). Note that −c2
can take on the values of all non-quadratic residues modulo p. If we can find an integer x
such that x2 + x + 1 is a non-quadratic residue modulo p, the values of a and c will follow
immediately. Hence we focus on this latter task.

Note that if x, y ∈ {0, . . . , p− 1} = B, then x2 + x+ 1 ≡ y2 + y + 1 (mod p) iff p divides
x + y + 1. We can deduce that x2 + x + 1 takes on (p + 1)/2 values as x varies in B. Since
there are (p − 1)/2 non-quadratic residues modulo p, the (p + 1)/2 values that x2 + x + 1
take on must be 0 and all the quadratic residues.

Let C be the set of quadratic residues modulo p and 0, and let y ∈ C. Suppose that
y ≡ z2 (mod p) and let z ≡ 2w + 1 (mod p) (we can always choose such w). Then y + 3 ≡
4(w2 + w + 1) (mod p). From the previous paragraph, we know that 4(w2 + w + 1) ∈ C.
This means that y ∈ C =⇒ y + 3 ∈ C. Unless p = 3, the relation implies that all elements
of B are in C, a contradiction. This concludes the proof.

Problem 4. Let n and b be positive integers. We say n is b-discerning if there exists a
set consisting of n different positive integers less than b that has no two different subsets U
and V such that the sum of all elements in U equals the sum of all elements in V .

(a) Prove that 8 is a 100-discerning.
(b) Prove that 9 is not 100–discerning.
(Senior Problems Committee of the Australian Mathematical Olympiad Committee)
Solution.
(a) Take S = {3, 6, 12, 24, 48, 95, 96, 97}, i.e.

S = {3 · 2k : 0 ≤ k ≤ 5} ∪ {3 · 25 − 1, 3 · 25 + 1}.
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As k ranges between 0 to 5, the sums obtained from the numbers 3 · 2k are 3t, where
1 ≤ t ≤ 63. These are 63 numbers that are divisible by 3 and are at most 3 · 63 = 189.

Sums of elements of S are also the numbers 95 + 97 = 192 and all the numbers that
are sums of 192 and sums obtained from the numbers 3 · 2k with 0 ≤ k ≤ 5. These are 64
numbers that are all divisible by 3 and at least equal to 192. In addition, sums of elements
of S are the numbers 95 and all the numbers that are sums of 95 and sums obtained from
the numbers 3 · 2k with 0 ≤ k ≤ 5. These are 64 numbers that are all congruent to −1 mod
3.

Finally, sums of elements of S are the numbers 97 and all the numbers that are sums of
97 and sums obtained from the numbers 3 · 2k with 0 ≤ k ≤ 5. These are 64 numbers that
are all congruent to 1 mod 3.

Hence there are at least 63 + 64 + 64 + 64 = 255 different sums from elements of S. On
the other hand, S has 28 − 1 = 255 non-empty subsets. Therefore S has no two different
subsets with equal sums of elements. Therefore, 8 is 100-discerning.

(b) Suppose that 9 is 100-discerning. Then there is a set S = {s1, . . . , s9}, si < 100 that
has no two different subsets with equal sums of elements. Assume that 0 < s1 < · · · < s9 <
100.

Let X be the set of all subsets of S having at least 3 and at most 6 elements and let Y
be the set of all subsets of S having exactly 2 or 3 or 4 elements greater than s3.

The set X consists of(
9

3

)
+

(
9

4

)
+

(
9

5

)
+

(
9

6

)
= 84 + 126 + 126 + 84 = 420

subsets of S. The set in X with the largest sums of elements is {s4, . . . , s9} and the smallest
sums is in {s1, s2, s3}. Thus the sum of the elements of each of the 420 sets in X is at least
s1+s2+s3 and at most s4+ · · ·+s9, which is one of (s4+ · · ·+s9)−(s1+s2+s3)+1 integers.
From the pigeonhole principle it follows that (s4 + · · ·+ s9)− (s1 + s2 + s3) + 1 ≥ 420, i.e.,

(s4 + · · ·+ s9)− (s1 + s2 + s3) ≥ 419. (1)

Now let us calculate the number of subsets in Y . Observe that {s4, . . . , s9} has
(
6
2

)
2-element subsets,

(
6
3

)
3-element subsets and

(
6
4

)
4-element subsets, while {s1, s2, s3} has

exactly 8 subsets. Hence the number of subsets of S in Y equals

8

((
6

2

)
+

(
6

3

)
+

(
6

4

))
= 8(15 + 20 + 15) = 400.

The set in Y with the largest sum of elements is {s1, s2, s3, s6, s7, s8, s9} and the smallest
sum is in {s4, s5}. Again, by the pigeonhole principle it follows that (s1 + s2 + s3 + s6 + s7 +
s8 + s9)− (s4 + s5) + 1 ≥ 400, i.e.,

(s1 + s2 + s3 + s6 + s7 + s8 + s9)− (s4 + s5) ≥ 399. (2)

Adding (1) and (2) yields 2(s6 + s7 + s8 + s9) ≥ 818, so that s9 + 98 + 97 + 96 ≥
s9 + s8 + s7 + s6 ≥ 409, i.e. s9 ≥ 118, a contradiction with s9 < 100. Therefore, 9 is not
100-discerning.
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Problem 5. Circles ω and Ω meet at points A and B. Let M be the midpoint of the
arc AB of circle ω (M lies inside Ω). A chord MP of circle ω intersects Ω at Q (Q lies inside
ω). Let `P be the tangent line to ω at P , and let `Q be the tangent line to Ω at Q. Prove
that the circumcircle of the triangle formed by the lines `P , `Q, and AB is tangent to Ω.
(Ilya Bogdanov, Russia and Medeubek Kungozhin, Kazakhstan)

Solution. Denote X = AB ∩ `P , Y = AB ∩ `Q, and Z = `P ∩ `Q. Without loss of
generality we have AX < BX. Let F = MP ∩ AB.
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Denote by R the second point of intersection of PQ and Ω; by S the point of Ω such that
SR ‖ AB; and by T the point of Ω such that RT ‖ `P . Since M is the midpoint of arc AB,
the tangent `M at M to ω is parallel to AB, so ∠(AB,PM) = ∠(PM, `P ). Therefore we
have ∠PRT = ∠MPX = ∠PFX = ∠PRS. Thus the point Q is the midpoint of the
arc TQS of Ω, hence ST ‖ `Q. So the corresponding sides of the triangles RST and XY Z
are parallel, and there exist a homothety h mapping RST to XY Z.

Let D be the second point of intersection of XR and Ω. We claim that D is the center of
the homothety h; since D ∈ Ω, this implies that the circumcircles of triangles RST and XY Z
are tangent, as required. So, it remains to prove this claim. In order to do this, it suffices to
show that D ∈ SY .

By ∠PFX = ∠XPF we have XF 2 = XP 2 = XA · XB = XD · XR. Therefore,
XF
XD

= XR
XF

, so the triangles XDF and XFR are similar, hence ∠DFX = ∠XRF = ∠DRQ =
∠DQY ; thus the points D, Y , Q, and F are concyclic. It follows that ∠Y DQ = ∠Y FQ =
∠SRQ = 180◦−∠SDQ which means exactly that the points Y , D, and S are collinear, with
D between S and Y .
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