Solutions of APMO 2014

Problem 1. For a positive integer m denote by S(m) and P(m) the sum and product,
respectively, of the digits of m. Show that for each positive integer n, there exist positive
integers ay, as, . . ., a, satisfying the following conditions:

S(ay) < S(ag) < -+ < S(ap) and S(a;) = P(a;+1) (1=1,2,...,n).

(We let a,41 = ay.) (Problem Committee of the Japan Mathematical Olympiad Foundation)

Solution. Let k be a sufficiently large positive integer. Choose for each 1 = 2,3,...,n,
a; to be a positive integer among whose digits the number 2 appears exactly k 4 ¢ — 2 times
and the number 1 appears exactly 28+~ — 2(k 4 i — 2) times, and nothing else. Then, we
have S(a;) = 2¥71 and P(a;) = 25772 for each i, 2 < i < n. Then, we let a; be a positive
integer among whose digits the number 2 appears exactly k 4+ n — 1 times and the number
1 appears exactly 28 — 2(k +n — 1) times, and nothing else. Then, we see that a; satisfies
S(a;) = 2F and P(a;) = 281, Such a choice of a; is possible if we take k to be large
enough to satisfy 2¥ > 2(k +mn — 1) and we see that the numbers ay, .. ., a, chosen this way
satisfy the given requirements.

Problem 2. Let S = {1,2,...,2014}. For each non-empty subset 7" C S, one of its
members is chosen as its representative. Find the number of ways to assign representatives
to all non-empty subsets of S so that if a subset D C S is a disjoint union of non-empty
subsets A, B,C' C S, then the representative of D is also the representative of at least one
of A, B,C. (Warut Suksompong, Thailand)

Solution. Answer: 108 - 2014!.

For any subset X let r(X) denotes the representative of X. Suppose that z; = r(S).
First, we prove the following fact:

If ;1 € X and X C S, then z; = r(X).

If | X| <2012, then we can write S as a disjoint union of X and two other subsets of S,
which gives that z; = r(X). If | X| = 2013, then let y € X and y # x;. We can write X as
a disjoint union of {z1,y} and two other subsets. We already proved that r({z1,y}) = 1
(since [{z1,y}| = 2 < 2012) and it follows that y # r(X) for every y € X except x;. We
have proved the fact.

Note that this fact is true and can be proved similarly, if the ground set S would contain
at least 5 elements.

There are 2014 ways to choose 1 = r(S) and for z; € X C S we have r(X) = 7. Let
S1 = S\ {z1}. Analogously, we can state that there are 2013 ways to choose xo = 7(.57)
and for 25 € X C S; we have r(X) = x9. Proceeding similarly (or by induction), there
are 2014 - 2013 ---5 ways to choose 1, x9,...,T9010 € S so that for all « = 1,2...,2010,
x; =r(X) for each X C S\ {xy,..., 2,1} and z; € X.

We are now left with four elements Y = {y1, o, y3,v4}. There are 4 ways to choose (V).

Suppose that y; = r(Y). Then we clearly have y; = r({y1,v2}) = 7({y1,y3}) = 7({v1, ya})-
The only subsets whose representative has not been assigned yet are {y1, vy, y3}, {v1,v2, Y1},

{1, ys, ya ks {vo, ys, Yats {y2, sty {y2, Ya}, {ys, ya}. These subsets can be assigned in any way,
hence giving 3* - 2% more choices.



In conclusion, the total number of assignments is 2014 - 2013 ---4 - 3* - 23 = 108 - 2014

Problem 3. Find all positive integers n such that for any integer k there exists an
integer a for which a® + a — k is divisible by n. (Warut Suksompong, Thailand)

Solution. Answer: All integers n = 3%, where b is a nonnegative integer.

We are looking for integers n such that the set A = {a®*+a | a € Z} is a complete residue
system by modulo n. Let us call this property by (*). It is not hard to see that n = 1
satisfies (*) and n = 2 does not.

If a = b (mod n), then a® +a = b + b (mod n). So n satisfies (*) iff there are no
a,b € {0,...,n—1} witha # b and a® + a =0*> + b (mod n).

First, let us prove that 3/ satisfies (*) for all j > 1. Suppose that a®*+a = b*+b (mod 37)
for a # b. Then (a — b)(a* + ab + b* + 1) = 0 (mod 37). We can easily check mod 3 that
a® + ab + b* + 1 is not divisible by 3.

Next note that if A is not a complete residue system modulo integer r, then it is also not
a complete residue system modulo any multiple of . Hence it remains to prove that any
prime p > 3 does not satisfy (*).

If p =1 (mod 4), there exists b such that > = —1 (mod p). We then take a = 0 to
obtain the congruence a® + a = b* + b (mod p).

Suppose now that p = 3 (mod 4). We will prove that there are integers a,b # 0 (mod p)
such that a® + ab+0?> = —1 (mod p). Note that we may suppose that a # b (mod p), since
otherwise if @ = b (mod p) satisfies a*> + ab+b* +1 =0 (mod p), then (2a)* + (2a)(—a) +
a’>+ 1 =0 (mod p) and 2a # —a (mod p). Letting ¢ be the inverse of b modulo p (i.e.
be =1 (mod p)), the relation is equivalent to (ac)® + ac+ 1= —c* (mod p). Note that —c?
can take on the values of all non-quadratic residues modulo p. If we can find an integer x
such that 22 4+ z + 1 is a non-quadratic residue modulo p, the values of a and ¢ will follow
immediately. Hence we focus on this latter task.

Note that if z,y € {0,...,p—1} = B, then 22 + v+ 1 =3*> + y+ 1 (mod p) iff p divides
4y + 1. We can deduce that z? + x + 1 takes on (p + 1)/2 values as x varies in B. Since
there are (p — 1)/2 non-quadratic residues modulo p, the (p + 1)/2 values that z? + x + 1
take on must be 0 and all the quadratic residues.

Let C be the set of quadratic residues modulo p and 0, and let y € C'. Suppose that
y = 2% (mod p) and let z = 2w + 1 (mod p) (we can always choose such w). Then y + 3 =
4(w? + w + 1) (mod p). From the previous paragraph, we know that 4(w? + w + 1) € C.
This means that y € C = y + 3 € C. Unless p = 3, the relation implies that all elements
of B are in C', a contradiction. This concludes the proof.

Problem 4. Let n and b be positive integers. We say n is b-discerning if there exists a
set consisting of n different positive integers less than b that has no two different subsets U
and V' such that the sum of all elements in U equals the sum of all elements in V.

(a) Prove that 8 is a 100-discerning.

(b) Prove that 9 is not 100—discerning.

(Senior Problems Committee of the Australian Mathematical Olympiad Committee)

Solution.

(a) Take S = {3,6,12,24,48,95,96,97}, i.e.

S={3-2":0<k<5}uU{3-2°-1,3-2° +1}.



As k ranges between 0 to 5, the sums obtained from the numbers 3 - 2* are 3t, where
1 <t <63. These are 63 numbers that are divisible by 3 and are at most 3 - 63 = 189.

Sums of elements of S are also the numbers 95 4+ 97 = 192 and all the numbers that
are sums of 192 and sums obtained from the numbers 3 - 2¥ with 0 < k& < 5. These are 64
numbers that are all divisible by 3 and at least equal to 192. In addition, sums of elements
of S are the numbers 95 and all the numbers that are sums of 95 and sums obtained from
the numbers 3 - 2 with 0 < k < 5. These are 64 numbers that are all congruent to —1 mod
3.

Finally, sums of elements of S are the numbers 97 and all the numbers that are sums of
97 and sums obtained from the numbers 3 - 2 with 0 < k < 5. These are 64 numbers that
are all congruent to 1 mod 3.

Hence there are at least 63 4+ 64 + 64 + 64 = 255 different sums from elements of S. On
the other hand, S has 28 — 1 = 255 non-empty subsets. Therefore S has no two different
subsets with equal sums of elements. Therefore, 8 is 100-discerning.

(b) Suppose that 9 is 100-discerning. Then there is a set S = {s1,..., 9}, s; < 100 that
has no two different subsets with equal sums of elements. Assume that 0 < s; < -+ < 89 <
100.

Let X be the set of all subsets of S having at least 3 and at most 6 elements and let YV
be the set of all subsets of S having exactly 2 or 3 or 4 elements greater than s;.

The set X consists of

9 9 9 9
=84+ 126 4 12 4 =42
(5)+ (3)+ () + (§) = s 120 126+ 80 = 420

subsets of S. The set in X with the largest sums of elements is {sy4, ..., S9} and the smallest
sums is in {s1, s2, s3}. Thus the sum of the elements of each of the 420 sets in X is at least
$1+S2+s3 and at most sy + - - - + S, which is one of (s4+- -+ +59) — (51 + 52+ s3) + 1 integers.
From the pigeonhole principle it follows that (s4 4 -+ + s9) — (81 + s2 + s3) + 1 > 420, i.e.,

(s44 -+ 89) — (81 + 82+ s3) > 4109. (1)

Now let us calculate the number of subsets in Y. Observe that {s4,...,se} has ()

2
2-element subsets, (g) 3-element subsets and (Z) 4-element subsets, while {s1, s2, s3} has

exactly 8 subsets. Hence the number of subsets of S in Y equals

() () () weemro-sn

The set in Y with the largest sum of elements is {s, S92, $3, S¢, S7, S3, So} and the smallest
sum is in {s4, s5}. Again, by the pigeonhole principle it follows that (s1 + sg + 3+ S¢ + 57+
Sg + S9) — (s4+ s5) + 1 > 400, i.e.,

(81+82+83+86+S7+88+89)—(S4-|—85)2399. (2)

Adding (1) and (2) yields 2(sg + s7 + ss + s9) > 818, so that sg + 98 + 97 + 96 >
Sg + sg + s7 + s¢ > 409, i.e. s9 > 118, a contradiction with sg < 100. Therefore, 9 is not
100-discerning.



Problem 5. Circles w and (2 meet at points A and B. Let M be the midpoint of the
arc AB of circle w (M lies inside Q). A chord M P of circle w intersects 2 at @ (Q lies inside
w). Let ¢p be the tangent line to w at P, and let {g be the tangent line to © at ). Prove
that the circumcircle of the triangle formed by the lines ¢p, {g, and AB is tangent to €.
(Ilya Bogdanov, Russia and Medeubek Kungozhin, Kazakhstan)

Solution. Denote X = ABN/{p, Y = ABN{g, and Z = {p N {y. Without loss of
generality we have AX < BX. Let F = MPNAB.

Denote by R the second point of intersection of PQ and €2; by S the point of €2 such that
SR || AB; and by T the point of Q such that RT' || {p. Since M is the midpoint of arc AB,
the tangent ¢y, at M to w is parallel to AB, so Z(AB,PM) = Z(PM,{p). Therefore we
have /PRT = /MPX = /PFX = ZPRS. Thus the point ) is the midpoint of the
arc QS of Q, hence ST || £g. So the corresponding sides of the triangles RST and XY Z
are parallel, and there exist a homothety h mapping RST to XY Z.

Let D be the second point of intersection of X R and 2. We claim that D is the center of
the homothety h; since D € €2, this implies that the circumcircles of triangles RST and XY Z
are tangent, as required. So, it remains to prove this claim. In order to do this, it suffices to
show that D € SY.

By /PFX = /XPF we have XF? = XP? = XA-XB = XD - XR. Therefore,
25 = 28, so the triangles X DF and X F'R are similar, hence ZDFX = /XRF = ZDRQ =
ZDQY; thus the points D, Y, @), and F' are concyclic. It follows that /Y DQ = ZYFQ =
ZSRQ) = 180° — £S5 D) which means exactly that the points Y, D, and S are collinear, with
D between S and Y.



